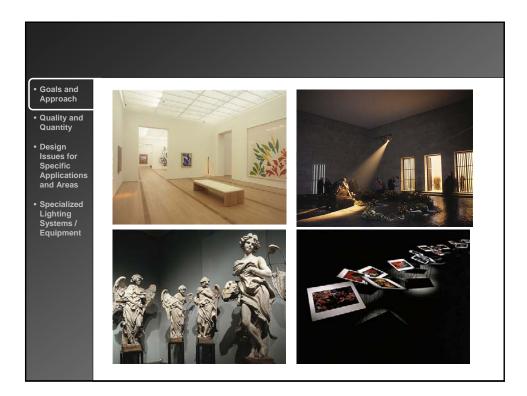
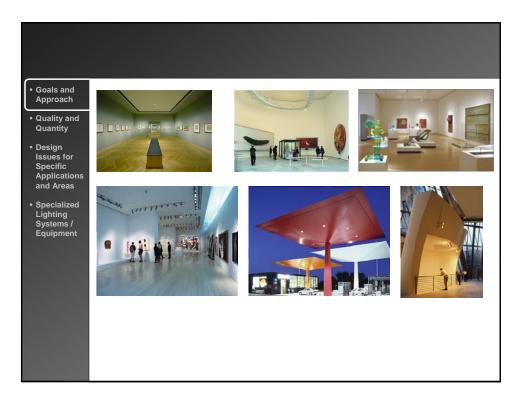
Display/Exhibit/Museum


Goals and Approach


 Quality and Quantity

 Design Issues for Specific Applications and Areas

- Museums and art galleries collect, preserve, analyze, and display natural artifacts and examples of human achievement and their impact on us.
- Effective exhibit lighting must balance exhibition and conservation needs and enrich the museum experience.
- Exhibit lighting impacts several important groups, including museum curatorial, educational, and conservation staff; designers; and visitors. Effective museum lighting must balance the concerns of each group.

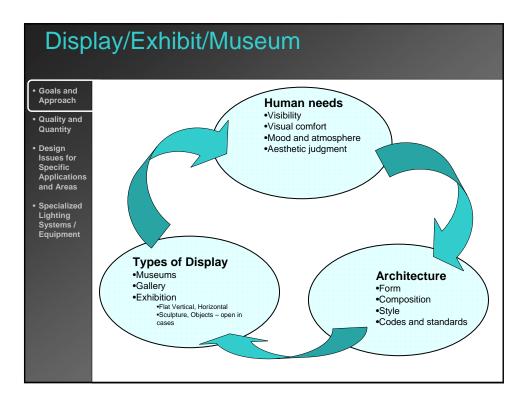
Systems Approach Solution

Goals and

Approach

Quantity Design
 Issues for

Specific Applications

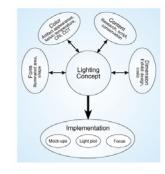

and Areas

Specialized Lighting

Systems / Equipment

Artifact conservation and display requirements should be determined based on the following: Quality and

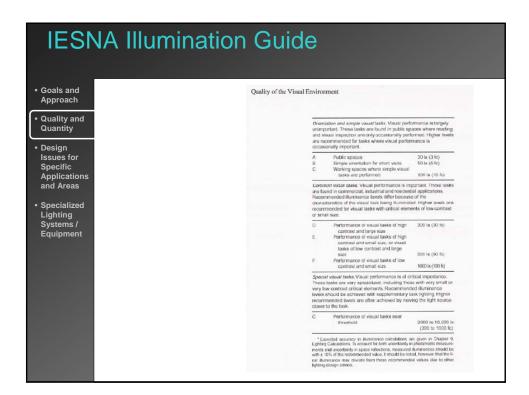
- Low illuminance can compromise the visual enjoyment of an artifact but can still cause some damage. There is no point in causing any damage if the artifact cannot be seen well.
- The institution should decide how much illuminance _ and how much exposure time is acceptable, that is, what artifact lifetime is desirable.
- The institution should determine the sensitivity to _ light of each artifact or group of artifacts as accurately as possible.

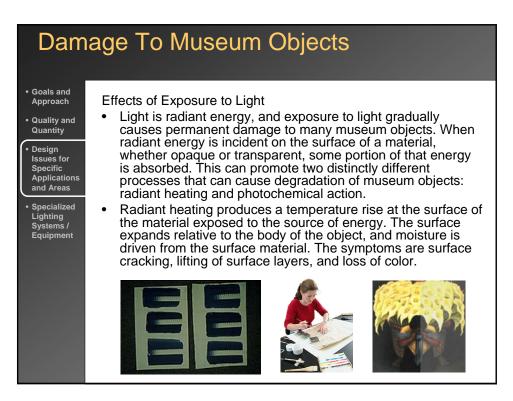

Design Guidelines

Goals and Approach

 Quality and Quantity

 Design Issues for Specific Applications and Areas


 Specialized Lighting Systems / Equipment Museum and art gallery lighting design differs in some important respects from many other types of lighting design. Museum objects are often unique in size, shape, texture, and color, and many are extremely sensitive to light damage. Lighting design becomes a selective visibility process that governs what we see, how we see it, and when we see it.



The Design Concept. Concept development begins by analyzing the reasons for the exhibition and identifying the dominant elements. The designer should then put these ideas into a simple, declarative sentence expressing the lighting concept. This statement becomes the "channel" through which the design flows. Concept development facilitates implementation.

Color. Using color in museums is different from using color in other places because the color of the light source should not change the look of an artifact, that is, affect its "original appearance." Thus enhancement of certain colors with selective colored light is usually inappropriate when lighting museum artifacts.

IESN • Goals and	VA Illuminatior Museum Lighting	ו	(G	G	u	i	d	e	2																
Approach																										
 Quality and Quantity 																										
Design Issues for	IESNA Lighting Design Guide Interior II. INTERIOR Very Important Important Important Bank = Not Important or not applicable									2012																
 Specific Applications and Areas Specialized Lighting Systems / Equipment 	LOCATIONS AND TASKS	Appearance of Space and Luminaires	Color Appearance (and Color Contract)	Devilopting Integration and Control		Flicker (and Strobe)	Light Distribution on Surfaces	Light Distribution on Tesk Plane (Uniformity)	Luminances of Room Surfaces	Modeling of Faces or Objects	Point(s) of Interest	Reflected Glare	Shadows	Source/Task/Eye Geometry	Spando/Dostrable Reflected Highlights	terts	System Control and Flexolity	Special Considerations	Notes on Special Considerations	Illuminance (Horizontal)	Category or Value (lux)	Illuminance (Vertical)	Category or Vistue (lux)	Notes on Illuminance - see and of section	Reference Chapter(s)	
	Museums Pial displays on vertical surfaces Exhibit cases 3 dimensional objects Realistic environments Lootees, energi gallery areas, corridors Lootees, energi gallery areas, corridors Restoration or conservation shops and labs																		(7) (7) (7) (7) (7) (7)		DDCE		D B B A C		Ch. 14	

Damage To Museum Objects

 Goals and Approach

 Quality and Quantity

Design Issues for Specific Applications and Areas

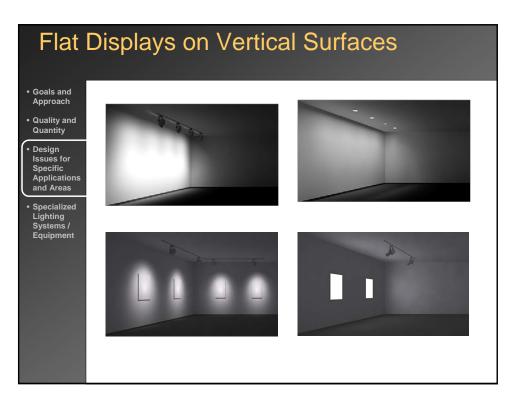
 Specialized Lighting Systems / Equipment

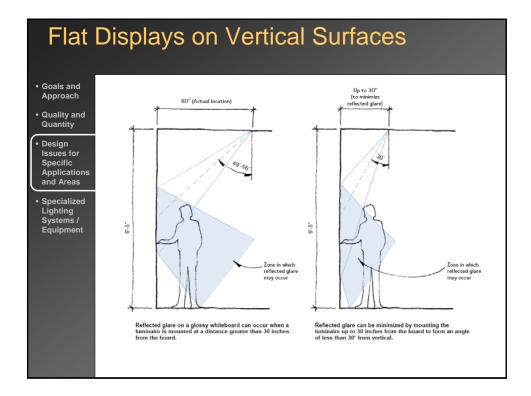
	Light Source	UV (µW/lm)	UV (percent)
Incandeso	ent and tungsten-halogen		
Incande	scent (CIE Source A, 2850 K)	75	1.7
PAR38	lungsten-halogen	67	1.4
MR16 t	ungsten-halogen, dichroic,		
with g	lass cover	36	0.9
MR16 t	ungsten-halogen, aluminized,		
with g	lass cover	95	1.9
Fluoresce	nt		
Range*	lowest	80	2.0
	highest	280	8.3
Typical*	F40RE730	130	3.4
	F40RE830	140	4.6
Daylight			
Overcas	st sky (6500 K) outdoors	540	12.0
Overcas	at sky through glass	410	9.5
Skylight	+ sunlight (5500 K) outdoors	350	8.3
Ckulight	+ sunlight through glass	275	6.7

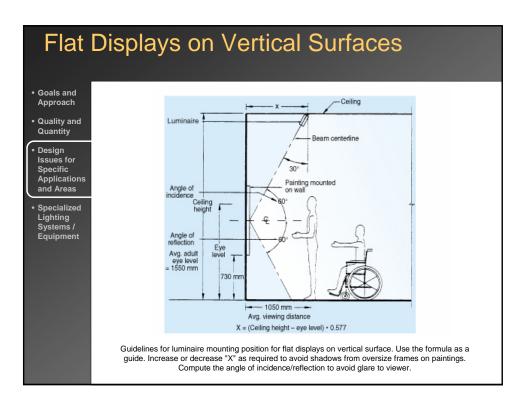
Types of Materials	Maximum Illuminance	Lux-Hours Per Year
Highly susceptible displayed materials: textiles, cotton, natural fibers, furs, silk, writing inks, paper documents, lace, fugitive dyes, watercolors, wool, some minerals	50 lux	50,000
Moderately susceptible displayed materials: textiles with stable dyes, oil paintings, wood finishes, leather, some plastics	200 lux	480,000
Least susceptible displayed materials: metal, stone, glass, ceramic, most minerals	Depends or situation	exhibition
Note: All UV radiation (400 nm and below) spectrum is defined as extending from 380 n tors troat all wavelengths shorter than 400 nn high below this wavelength and the visual aff "These values follow the reciprocity princ illuminance values can be altered for differen	m to 760 nm. Muse n as UV; the dama act is very small. iple, and therefore	eum conserva- ge potential is the maximum

Absolute and Relative Amounts of Ultraviolet (UV) Radiation from Electric and Natural Light Sources Useful to Museum Applications

Four	Typical Lighting Situations
 Goals and Approach Quality and Quantity Design Issues for Specific Applications and Areas Specialized Lighting Systems / Equipment 	 Most museum exhibit displays can be categorized into one of four groups: flat displays on vertical surfaces display cases, three-dimensional objects, and realistic environments. Within each group, the lighting designer must deal with unique challenges and creative opportunities.


Flat Displays on Vertical Surfaces


 Goals and Approach
 Quality and Quantity


Design Issues for Specific Applications and Areas

 Specialized Lighting Systems / Equipment Uniform illumination of large vertical displays presents a common lighting problem in museums. Paintings, prints, documents, and explanatory labels are included in this important category.

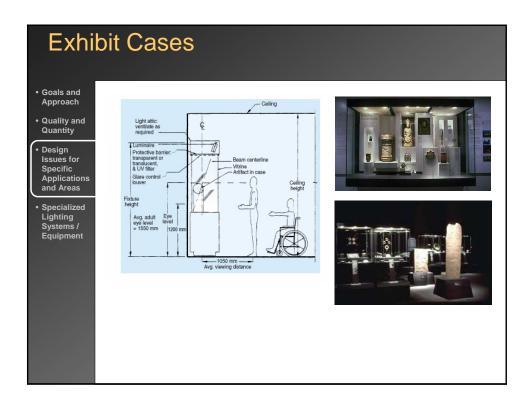
Lighting becomes difficult when acrylic or glass is used to protect the artifact. The combination of the specular surface and improperly placed luminaires can cause reflected glare and obscure the artifact.

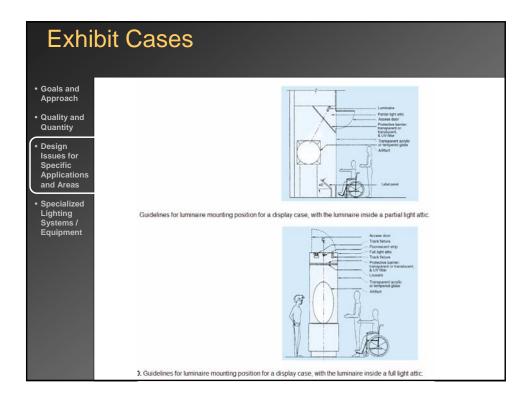
Exhibit Cases

 Goals and Approach

 Quality and Quantity

 Design Issues for Specific Applications and Areas


Specialized
 Lighting
 Systems /
 Equipment

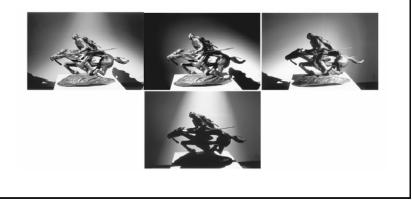

Museum exhibit cases allow visitors to approach rare and delicate artifacts closely while maintaining a barrier against degradation, vandalism, or theft.

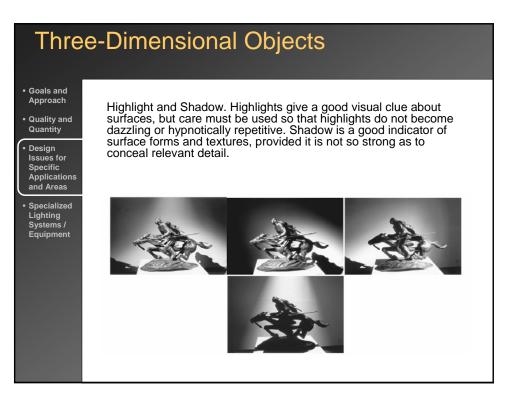
Cases usually contain small, delicate, and valuable artifacts.

Display cases (vitrines) can have either mullions at the corners or clear acrylic or tempered glass panels glued at the edges.

<section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Three-Dimensional Objects


 Goals and Approach


 Quality and Quantity

Design Issues for Specific Applications and Areas

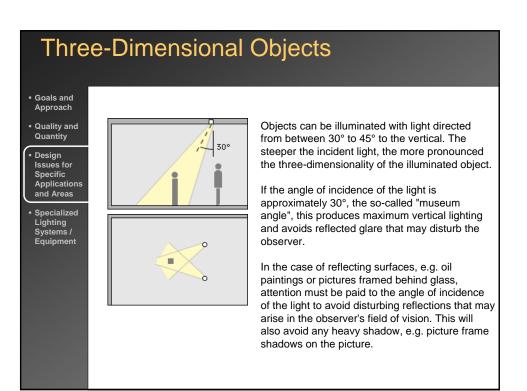
 Specialized Lighting Systems / Equipment Irrespective of size, a three-dimensional artifact must be illuminated from several different directions. Light from multiple directions models a sculpture, expressing depth by highlighting some areas while allowing others to fall into shadow.

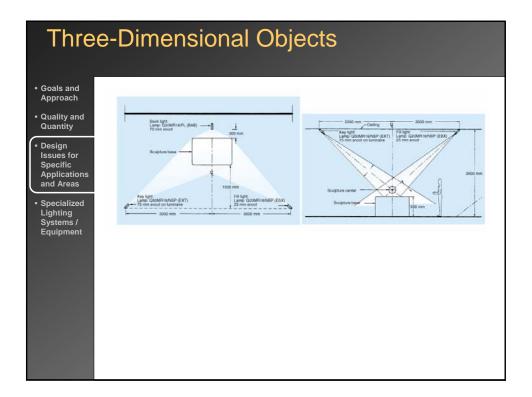
Consider, for example, a bronze figure with a patina of light blue, green, and gray coloring. Light sources from different angles render these hues with lesser or greater emphasis.

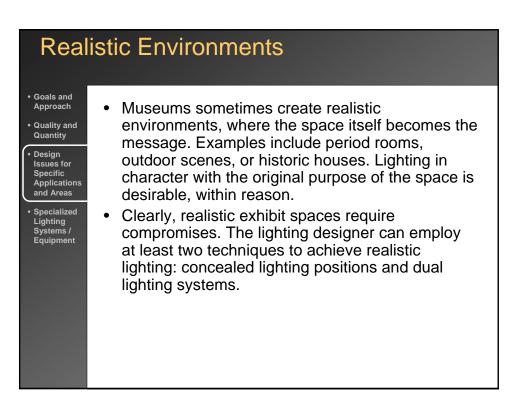
Three-Dimensional Objects

 Goals and Approach

 Quality and Quantity


 Design Issues for Specific Applications and Areas


 Specialized Lighting Systems / Equipment Minimizing Glare. There are few problems for the viewer when an object at eye level or lower is lighted from all sides where the center beam axis of the luminaire is 30° or less from the vertical. For a small, low object, the luminaires should be steeply angled, limiting the risk of glare for the observer on the opposite side. When an object is tall, some light may go past the display and cause glare for viewers on the far side looking upward at it. Solutions to this problem include:


- Angling the luminaires sharply down and relieving shadows with a high-reflectance pedestal
- · Keeping light beams entirely within the mass of the display
- Illuminating objects from below as long as appearances are not distorted

• Using overall soft lighting (fill light) in the display space so that all objects can be readily seen, while focusing a narrow beam (key light) on the important parts of each object

· Lighting the background behind the artifact

Realistic Environments

 Goals and Approach

Concealed Lighting.

 Quality and Quantity

 Design Issues for Specific Applications and Areas

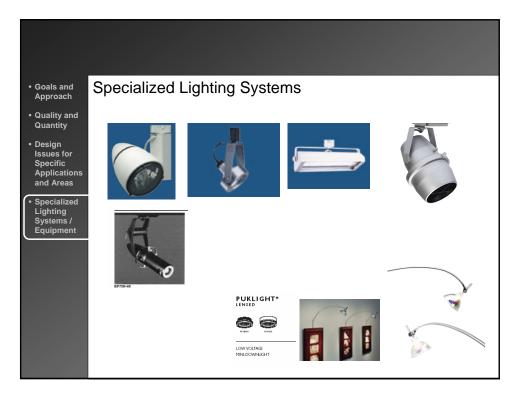
 Specialized Lighting Systems / Equipment Concealed lighting locations require definitive viewing positions, highlighted prominent display features, and adequate light for visitor safety.

Dual Lighting.

A dual lighting system uses control equipment that alternates, either automatically or manually, between realistic lighting and good display lighting. The display lighting should complement the realistic lighting in both style and color. Electric lighting must substitute for original flame source lighting (candles, mantles, gas jets) for safety and conservation reasons. (Any real flame would emit unwanted soot and water vapor into the display area.) Electric light that very slowly alternates between the glow emitted by a gas jet and the intensity required for easy viewing can be very effective.

Luminaires And Accessories

 Goals and Approach

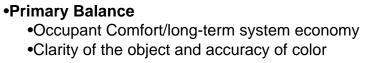

Typical museum and art gallery interior lighting applications include:

 Quality and Quantity

 Design Issues for Specific Applications and Areas

 Specialized Lighting Systems / Equipment General lighting Accent lighting Indirect lighting Case or cabinet lighting Flood lighting Special effects lighting Safety lighting

Track lighting systems serve a dual purpose: connecting a light source to the power source and supporting the luminaire. Care should be taken not to overload the track, both electrically and physically, with too many luminaires

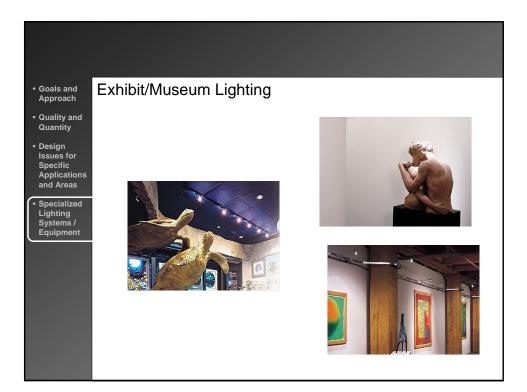


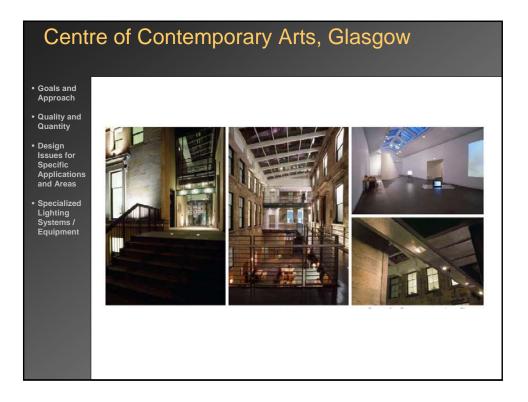
Goals and Approach

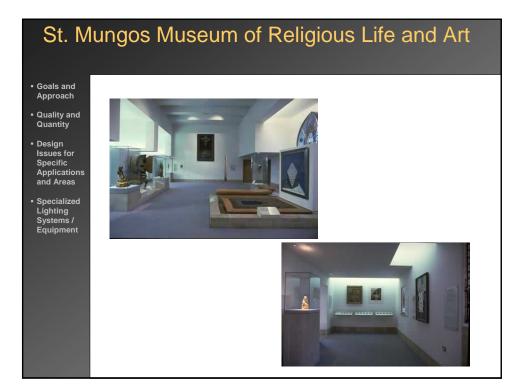
Exhibit/Museum Lighting

 Quality and Quantity

 Design Issues for Specific Applications and Areas





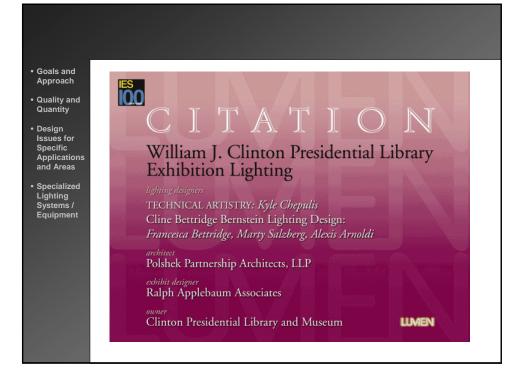

Museum of Scotland, England

 Goals and Approach

 Quality and Quantity

 Design Issues for Specific Applications and Areas

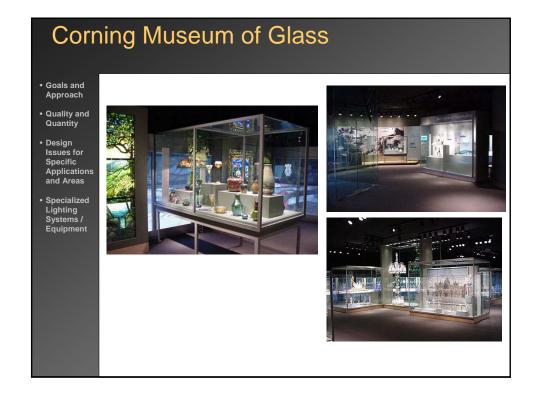



Singapore Art Museum, Singapore

 Goals and Approach

 Quality and Quantity

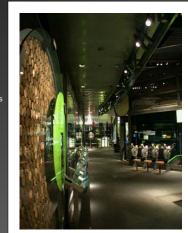
 Design Issues for Specific Applications and Areas


Museum of Fine Arts, Boston

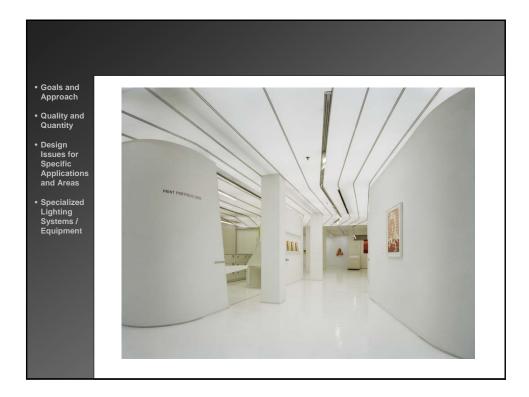
 Goals and Approach

 Quality and Quantity

 Design Issues for Specific Applications and Areas

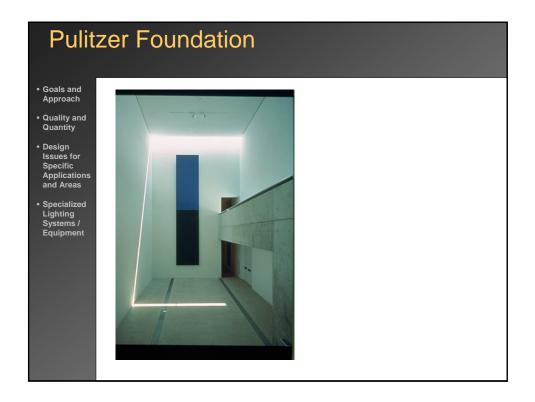


Corning Museum of Glass


 Goals and Approach

 Quality and Quantity

 Design Issues for Specific Applications and Areas



Nasher Sculpture Center Goals and Approach Quality and Quantity Design Issues for Specific Applications and Areas Specialized Lighting Systems / Equipment Seal of j.

Seattle Art Museum

 Goals and Approach

 Quality and Quantity

 Design Issues for Specific Applications and Areas

 Specialized Lighting Systems / Equipment

Museum of Coastal Defense

 Goals and Approach

 Quality and Quantity

 Design Issues for Specific Applications and Areas

British Museum: London England

 Goals and Approach

 Quality and Quantity

 Design Issues for Specific Applications and Areas

 Specialized Lighting Systems / Equipment

27